Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness.

Identifieur interne : 000856 ( Main/Exploration ); précédent : 000855; suivant : 000857

Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness.

Auteurs : Paul W. Whitby [États-Unis] ; Daniel J. Morton ; Timothy M. Vanwagoner ; Thomas W. Seale ; Brett K. Cole ; Huda J. Mussa ; Phillip A. Mcghee ; Chee Yoon S. Bauer ; Jennifer M. Springer ; Terrence L. Stull

Source :

RBID : pubmed:23226321

Descripteurs français

English descriptors

Abstract

To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness.

DOI: 10.1371/journal.pone.0050588
PubMed: 23226321
PubMed Central: PMC3511568


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness.</title>
<author>
<name sortKey="Whitby, Paul W" sort="Whitby, Paul W" uniqKey="Whitby P" first="Paul W" last="Whitby">Paul W. Whitby</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America. pwhitby@ouhsc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma</wicri:regionArea>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morton, Daniel J" sort="Morton, Daniel J" uniqKey="Morton D" first="Daniel J" last="Morton">Daniel J. Morton</name>
</author>
<author>
<name sortKey="Vanwagoner, Timothy M" sort="Vanwagoner, Timothy M" uniqKey="Vanwagoner T" first="Timothy M" last="Vanwagoner">Timothy M. Vanwagoner</name>
</author>
<author>
<name sortKey="Seale, Thomas W" sort="Seale, Thomas W" uniqKey="Seale T" first="Thomas W" last="Seale">Thomas W. Seale</name>
</author>
<author>
<name sortKey="Cole, Brett K" sort="Cole, Brett K" uniqKey="Cole B" first="Brett K" last="Cole">Brett K. Cole</name>
</author>
<author>
<name sortKey="Mussa, Huda J" sort="Mussa, Huda J" uniqKey="Mussa H" first="Huda J" last="Mussa">Huda J. Mussa</name>
</author>
<author>
<name sortKey="Mcghee, Phillip A" sort="Mcghee, Phillip A" uniqKey="Mcghee P" first="Phillip A" last="Mcghee">Phillip A. Mcghee</name>
</author>
<author>
<name sortKey="Bauer, Chee Yoon S" sort="Bauer, Chee Yoon S" uniqKey="Bauer C" first="Chee Yoon S" last="Bauer">Chee Yoon S. Bauer</name>
</author>
<author>
<name sortKey="Springer, Jennifer M" sort="Springer, Jennifer M" uniqKey="Springer J" first="Jennifer M" last="Springer">Jennifer M. Springer</name>
</author>
<author>
<name sortKey="Stull, Terrence L" sort="Stull, Terrence L" uniqKey="Stull T" first="Terrence L" last="Stull">Terrence L. Stull</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23226321</idno>
<idno type="pmid">23226321</idno>
<idno type="doi">10.1371/journal.pone.0050588</idno>
<idno type="pmc">PMC3511568</idno>
<idno type="wicri:Area/Main/Corpus">000787</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000787</idno>
<idno type="wicri:Area/Main/Curation">000787</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000787</idno>
<idno type="wicri:Area/Main/Exploration">000787</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness.</title>
<author>
<name sortKey="Whitby, Paul W" sort="Whitby, Paul W" uniqKey="Whitby P" first="Paul W" last="Whitby">Paul W. Whitby</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America. pwhitby@ouhsc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma</wicri:regionArea>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morton, Daniel J" sort="Morton, Daniel J" uniqKey="Morton D" first="Daniel J" last="Morton">Daniel J. Morton</name>
</author>
<author>
<name sortKey="Vanwagoner, Timothy M" sort="Vanwagoner, Timothy M" uniqKey="Vanwagoner T" first="Timothy M" last="Vanwagoner">Timothy M. Vanwagoner</name>
</author>
<author>
<name sortKey="Seale, Thomas W" sort="Seale, Thomas W" uniqKey="Seale T" first="Thomas W" last="Seale">Thomas W. Seale</name>
</author>
<author>
<name sortKey="Cole, Brett K" sort="Cole, Brett K" uniqKey="Cole B" first="Brett K" last="Cole">Brett K. Cole</name>
</author>
<author>
<name sortKey="Mussa, Huda J" sort="Mussa, Huda J" uniqKey="Mussa H" first="Huda J" last="Mussa">Huda J. Mussa</name>
</author>
<author>
<name sortKey="Mcghee, Phillip A" sort="Mcghee, Phillip A" uniqKey="Mcghee P" first="Phillip A" last="Mcghee">Phillip A. Mcghee</name>
</author>
<author>
<name sortKey="Bauer, Chee Yoon S" sort="Bauer, Chee Yoon S" uniqKey="Bauer C" first="Chee Yoon S" last="Bauer">Chee Yoon S. Bauer</name>
</author>
<author>
<name sortKey="Springer, Jennifer M" sort="Springer, Jennifer M" uniqKey="Springer J" first="Jennifer M" last="Springer">Jennifer M. Springer</name>
</author>
<author>
<name sortKey="Stull, Terrence L" sort="Stull, Terrence L" uniqKey="Stull T" first="Terrence L" last="Stull">Terrence L. Stull</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Bacteremia (microbiology)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Catalase (metabolism)</term>
<term>Female (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Haemophilus influenzae (cytology)</term>
<term>Haemophilus influenzae (genetics)</term>
<term>Haemophilus influenzae (metabolism)</term>
<term>Haemophilus influenzae (physiology)</term>
<term>Heme (metabolism)</term>
<term>Intracellular Space (metabolism)</term>
<term>Iron (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Otitis Media (microbiology)</term>
<term>Oxidative Stress (genetics)</term>
<term>Peroxiredoxins (metabolism)</term>
<term>Pregnancy (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Regulon (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bactériémie (microbiologie)</term>
<term>Catalase (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Femelle (MeSH)</term>
<term>Fer (métabolisme)</term>
<term>Grossesse (MeSH)</term>
<term>Haemophilus influenzae (cytologie)</term>
<term>Haemophilus influenzae (génétique)</term>
<term>Haemophilus influenzae (métabolisme)</term>
<term>Haemophilus influenzae (physiologie)</term>
<term>Hème (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Otite moyenne (microbiologie)</term>
<term>Peroxirédoxines (métabolisme)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Rats (MeSH)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Régulon (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Stress oxydatif (génétique)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Catalase</term>
<term>Heme</term>
<term>Iron</term>
<term>Peroxiredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Haemophilus influenzae</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Haemophilus influenzae</term>
<term>Protéines bactériennes</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Haemophilus influenzae</term>
<term>Intracellular Space</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bactériémie</term>
<term>Otite moyenne</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Bacteremia</term>
<term>Otitis Media</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Catalase</term>
<term>Espace intracellulaire</term>
<term>Fer</term>
<term>Haemophilus influenzae</term>
<term>Hème</term>
<term>Peroxirédoxines</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Kinetics</term>
<term>Mutation</term>
<term>Pregnancy</term>
<term>Rats</term>
<term>Regulon</term>
<term>Species Specificity</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cinétique</term>
<term>Femelle</term>
<term>Grossesse</term>
<term>Mutation</term>
<term>Rats</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Régulon</term>
<term>Spécificité d'espèce</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23226321</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness.</ArticleTitle>
<Pagination>
<MedlinePgn>e50588</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0050588</ELocationID>
<Abstract>
<AbstractText>To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Whitby</LastName>
<ForeName>Paul W</ForeName>
<Initials>PW</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America. pwhitby@ouhsc.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morton</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vanwagoner</LastName>
<ForeName>Timothy M</ForeName>
<Initials>TM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Seale</LastName>
<ForeName>Thomas W</ForeName>
<Initials>TW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cole</LastName>
<ForeName>Brett K</ForeName>
<Initials>BK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mussa</LastName>
<ForeName>Huda J</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McGhee</LastName>
<ForeName>Phillip A</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bauer</LastName>
<ForeName>Chee Yoon S</ForeName>
<Initials>CY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Springer</LastName>
<ForeName>Jennifer M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stull</LastName>
<ForeName>Terrence L</ForeName>
<Initials>TL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI29611</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016470" MajorTopicYN="N">Bacteremia</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="Y">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006193" MajorTopicYN="N">Haemophilus influenzae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010033" MajorTopicYN="N">Otitis Media</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018085" MajorTopicYN="Y">Regulon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23226321</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0050588</ArticleId>
<ArticleId IdType="pii">PONE-D-12-25166</ArticleId>
<ArticleId IdType="pmc">PMC3511568</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechniques. 1997 Oct;23(4):648-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9343684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:755-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Nov;74(11):6213-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16966415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 May;72(4):844-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2009 Nov;299(7):479-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jun;64(5):1375-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17542927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2012;5:327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22731867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jul;70(7):4136-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Immunol Med Microbiol. 2006 Apr;46(3):426-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Jan;153(Pt 1):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1994 Nov;62(11):4855-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7927766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jan;63(1):54-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2009 Aug 24;2:166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):6035-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jan;67(1):129-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Dec 15;253(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Mar 15;14(6):1049-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Aug;188(15):5640-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16855256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2011 Feb;110(2):375-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1996 Nov;64(11):4618-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8890216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Sep;185(18):5555-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 1984 Aug;18(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6146721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Jul 28;269(5223):496-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7542800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 13;279(5357):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Dec;183(24):7173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jul;187(13):4627-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15968074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1999 Jun;67(6):2729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10338475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2010;10:162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20515494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19128474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Physiol Pharmacol. 2010 Mar;88(3):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20393591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Aug;74(8):4666-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2006;6:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2010 Apr;156(Pt 4):1188-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1994 May;62(5):1710-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8168932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16422-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2003 Jan;71(1):550-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12496210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Oct;186(19):6409-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 25;96(11):6161-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10339558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1998 Jan 1;158(1):57-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9453156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2011 Feb;79(2):745-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21098105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2009 Jan;18(1):101-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19177355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Dec;150(Pt 12):3923-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15583146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1999 Jun;67(6):2746-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10338477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Dec;8(12):2115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Infect Dis J. 2009 Jan;28(1):43-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19057458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2007 Jul;9(8):932-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17548224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 2004 Jan;36(1):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14643637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1997 Jun;15(9):955-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9261941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Med. 2003;71:57-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol C Toxicol Pharmacol. 2011 Mar;153(2):175-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Feb;189(3):1004-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2010;10:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2012 Sep 15;525(2):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22381957</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oklahoma</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bauer, Chee Yoon S" sort="Bauer, Chee Yoon S" uniqKey="Bauer C" first="Chee Yoon S" last="Bauer">Chee Yoon S. Bauer</name>
<name sortKey="Cole, Brett K" sort="Cole, Brett K" uniqKey="Cole B" first="Brett K" last="Cole">Brett K. Cole</name>
<name sortKey="Mcghee, Phillip A" sort="Mcghee, Phillip A" uniqKey="Mcghee P" first="Phillip A" last="Mcghee">Phillip A. Mcghee</name>
<name sortKey="Morton, Daniel J" sort="Morton, Daniel J" uniqKey="Morton D" first="Daniel J" last="Morton">Daniel J. Morton</name>
<name sortKey="Mussa, Huda J" sort="Mussa, Huda J" uniqKey="Mussa H" first="Huda J" last="Mussa">Huda J. Mussa</name>
<name sortKey="Seale, Thomas W" sort="Seale, Thomas W" uniqKey="Seale T" first="Thomas W" last="Seale">Thomas W. Seale</name>
<name sortKey="Springer, Jennifer M" sort="Springer, Jennifer M" uniqKey="Springer J" first="Jennifer M" last="Springer">Jennifer M. Springer</name>
<name sortKey="Stull, Terrence L" sort="Stull, Terrence L" uniqKey="Stull T" first="Terrence L" last="Stull">Terrence L. Stull</name>
<name sortKey="Vanwagoner, Timothy M" sort="Vanwagoner, Timothy M" uniqKey="Vanwagoner T" first="Timothy M" last="Vanwagoner">Timothy M. Vanwagoner</name>
</noCountry>
<country name="États-Unis">
<region name="Oklahoma">
<name sortKey="Whitby, Paul W" sort="Whitby, Paul W" uniqKey="Whitby P" first="Paul W" last="Whitby">Paul W. Whitby</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000856 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000856 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23226321
   |texte=   Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23226321" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020